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* A SIMPLE, NATURAL NOTATION FOR APPLICATIVE LANGUAGES*
.4,.

B. J. MacLennan

Computer Science Department

4.i Naval Postgraduate School

Monterey, CA 93940

1. Introduction

Many non-specialists are intimidated by the mathematical appear-

ance of most applicative and very-high-level languages.

Mathematical notations have distinct manipulative advantages,

some of which I have discussed in MacLennan (1979). Unfor-

4" tunately the widespread use of advanced languages may be limited

by their excessive use of mathematical notations. This paper

presents a simple notation that has an unintimidating, natural-

language appearance and that can be adapted to a variety of

languages.

.1 -I must stress that I am not suggesting that this notation

constitutes natural language programming. This notation is very

far indeed from being even a subset of English, or any other

natural language. However, the reader will see that with a

proper choice of vocabulary the notation can be quite readable.

I must also stress that this notation is not in itself a

F programing language. It is more accurate to describe it as a

.. ~*Work described in this report was supported in part by the
Office of Naval Research under contract number NOOO14-82-WR-
20162.
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syntactic framework that can be adapted to a number of specific

contexts by a proper choice of vocabulary. The figures in this

paper demonstrate its use as an alternate syntax for LISP, logic

programing, functional programming, relational programming, and

relational database operations.

2. Syntax

A natural, readable notation results from combining non-symbolic

operator names with a right-associative infix syntax, and comma

and colon rules that suppress many parentheses. Of course, some

of the manipulative advantages of a mathematical notation are

lost.

Briefly, the syntax is as follows: All identifiers are

*divided into three classes: niladic (x, y, z, in the following

examples), monadic (f, g), and dyadic (p, q, r). Monadic appli-

cations, whether functions or predicates, are written "f x", "f g

x", etc. These associate to the right,. hence "f g x" means "f(g

x)". Dyadic applications, whether functions or relations, are

written with a right-associative, infix syntax. That is, "x p y

q z" means "x p (y q z)". Monadic applications are more binding

than dyadic applications; hence, "f x p g y" means "(f x) p (g

y)". Operations that accept more than two operands are expressed

by using a list building (or argument combining) operation. For

example, if the operation "y with z" produces the pair (y,z),

then the triadic operation p can be applied by "x p y with z".

L -2-
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Commas and colons can be used to eliminate many parentheses.

A comma is equivalent to a right parenthesis. The corresponding

A left parenthesis is at the nearest preceding colon, or at the

beginning of the expression, if there is no preceding colon.

Hence, "x p y, q z" means "(X P Y) q z" and "x p: y q z, r w"

means "x p (y q z) r w", which by right-associativity means "x p

((y q z) r w)".

Since the parsing of expressions is determined by the clas-

sification of identifiers into niladic, monadic, and dyadic, it

is not possible to directly use a monadic or dyadic identifier as

the argument to another application. To do this it is necessary

to convert the monadic or dyadic identifier into a niladic iden-

tifter by quoting it. For example, the inverse of the dyadic

identifier plus must be written

inverse 'plus'

The formal grammar for this notation is in the appendix.

Figure 1 shows the natural notation adapted to LISP. The

particular vocabulary choices shown are typical. The following

two figures show a program in conventional LISP notation and in

the natural notation. The remaining figures compare other

mathematical and symbolic notations to the natural potation.

3. References

E1] MacLennan, B. J. Observations on the Differences Between
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Formulas and Sentences and their Application to Programming

Language Design, SIGPLAN Notices 14A, 7, (July 1979), pp.

Appendix: Grammar for Natural Notation.

senten~e = lause.

clause = term [predicate]

+ phrase, predicate

predicate = infix term [predicate]

+ infix: Clause

phrase simple-phrase

+ phrase, infix simple-phrase

simple-phrase = term [infix simple-phrase]

term = nilad

+ "(" Clause ")"

* prefix term

* 'monad'

+ 'dyad'

- constant

infix = dyad

* "(" Clause "}"

+ prefix infix

prefix monad

+ "(" Clause "]"
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Natural Notation LISP

"X F Y with Z" means B (defun F (X Y Z) B)

- "X F Y" means B (defun F (X Y) B)

"F X" means B (defun F (X) B)
t

C if B, else D (cond (B C) (T D))

"X" means Y, below B (let ((X Y)) B)

first X (car X)

rest X (cdr X)

second X (cadr X)

third X (caddr X)

X with Y (cons X Y)

X is Y (eq X Y)

atom X (atom X)

null X (null X)

number X (numberp X)

X append Y (append X Y)

X search Y (assoc X Y)

Figure 1. Comparison of Natural Notation and LISP
.4
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(defun eql (x y)

(or (and (atom x) (atom y) (eq x y))

(and (not (atom x)) (not (atom y))

(eql (car x) (car y))

(eql (edr x) (cdr y)) )) )

Figure 2. Equal Function in LISP

"X equals Y" means:

atom X and atom Y and X is Y, or

not atom X and not atom Y and:

first X equals first Y, and

rest X equals rest Y.

Figure 3. Equal Function in Natural Notation

Isa (John, human).

Gives (John, book, Mary).

Gives (John, book, x) <- Likes (John, x).

Likes (w,x) 4- Gives(w,y,x), Likes(w,y).

Figure 4. Logic Program in Usual Notation

John isa human.

John gives book to Mary.

John gives book to one., if John likes one.

One likes another, if:

one gives gift to another, and one likes gift.

Figure 5. Logic Program in Natural Notation

.3
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Dot IP a ()(cc X'tranls.

Dot MM z (co cc IP)*(cc d13tl)*[l, trans923

Figure 6. Functional Program in Backus Notation

Inner-product means

transpose then repeat times then reduce-by plus.

* Matrix-multiply means:

first combine second then transpose,

then repeat distribute-left

then repeat repeat inner-product.

Figure 7. Functional Program in Natural Notation

f$R fR:

rightsib z T 1$(IdHjj(+1))

next = umove.total [while( non.dom rightsib, parent); rightsibJ

prey 2 move.total

[while( non.dom rightaib ,parent); rightsib J

remove(L) z L :2 subtree N; excise

skbtree(n) z (m 1 X ints) -*T

4 where m x subnod03 n

reach z (img T) .( X ints)

excise zT :2 T 0> non.subnodes N (T N, N, NT N)

replace(L) z T :a (T N : first L L) /T

Figure 8. Part of Syntax Di~pc*e Editor in Relational Notation



V

"Function map structure" means

function then structure then inverse function.

"Right-sibling" means

inverse tree map identity parallel something plus 1.

"Move-next" means parent do-while non domain right-sibling,

then right-sibling, apply total then move.

"Move-previous" means

parent do-while non domain inverse right-sibling,

then inverse right-sibling, apply total then move.

"Remove-from buffer" means:

buffer becomes subtree of current-node, then excise.

"Subtree a-node" means:

tree if-in the-subnodes combine the-subnodes cross integers,

where the-subnodes means subnodes of a-node.

"Rea(-.' means: something cross integers, then image tree.

"Excise" means tree becomes

tree restrict non subnodes of current-node

combine: current-node apply inverse tree,

connect current-node connect non-term of current-node.

"Replace-from buffer" means tree becomes:

current-node apply inverse tree, maps-to first buffer,

combine buffer, extend tree.

Figure 9. Part of Syntax Directed Editor in Natural Notation

~-8-



{(F.COMPANY): FGFORESTS A F.SIZE>1000)

{(F.COMPANYF.FOREST): FGFORESTS A F.LOC='CALIFORNIA')

f(F.SIZE,F.LOC): FIFORESTS A

STSTREE (T.SPECIES='CEDAR, A T.FOREST = F.FOREST))

{(F.SIZET.TREENUM): FEFORESTS A TSTREE A

T.FOREST = F.FOREST A T.SPECIES 'CEDAR')

Figure 10. Relational Database Retrievals in Conventional

Notation

Company F whenever: F in forests, and size F > 1000.

Company F with forest F, whenever:

F in forests, and location F is "California".

* Size F with location F, whenever: F in forests,

and: T in trees, exists:

species T is "cedar", and forest T is forest F.

Size F with tree-number F, whenever:

F in forests, and T in trees, and

forest T is forest F, and species T is "cedar".

Figure 11. Relational Database Retrievals in Natural Notation

-9--
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(defun oval (e a)

(cond

((and (atom e) (numberp e)) e)

((atom e) (assoc e a))

((eq (car e) 'quote) (cadr e))

((eq (car e) 'cond) (evoon (cdr e) a))

CT (apply (car e) (evargs (cdr e) a) a) )

(defun evcon (L a)

(cond

((eval (caar L) a) (oval (cadar L) a))

CT (eveon (cdr L) a)) ))

(defun evargs (x a) (mapcar (bu (rev 'oval) a)x)

(defun apply (f x a)

(cond

((eq f 'car) (car (car x)))

((eq f 'cdr) (cdr (car x)W

((eq f 'atom) (atom (car x)W

((eq f 'null) (null (car x)W

((eq f 'cons) (cons (car x) (cadr W)

((eq f 'eq) (eq (car x) (cadr x)))

(T (let (M (oval f a) ))

(let ((E (mapear 'list (cadr L) x) )

(oval (caddr L) (append LE a))))))

Figure 12. LISP Universal Function in LISP

-10-



"Names evaluate form" means:

form if (atom form and number form), else:

names search form if atom form, else:

second form if first form is "quote", else:

names do-conditional rest form, if first form is "cond", else

names apply first form with names evaluate-list rest form.

"Names do-conditional pairs" means:

names evaluate second first pairs,

if names evaluate first first pairs,

else names do-conditional rest pairs.

"Names evaluate-list forms" means:

nil if null forms, else:

names evaluate first forms,

with names evaluate-list rest forms.

Figure 13. LISP Universal Function in Natural Notation (Part 1)

-I
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"Names apply function with actuals" means:

first first actuals if function is "car", else:

rest first actuals if function is "cdr", else:

atom first actuals if function is "atom", else:

null first actuals if function is "null", else:

first actuals with second actuals, if function is "cons", else:

first actuals is second actuals, if function is "eq", else:

names apply-user function with actuals.

"Names apply-user function with actuals" means:

lambda-expression means names evaluate function, below:

bound-variables means second lambda-expression, below:

bound-variables pair-with actuals, append names,

evaluate third lambda-expression.

"Names pair-with values" means:

nil if null names, else:

first names with first values,

with rest names pair-with rest values.

Figure 14. LISP Universal Function in Natural Notation (Part 2)

12
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